
Needfinding: Lessons for
Programming Language Design

Veronica A. Rivera (varivera@stanford.edu)
Postdoctoral Researcher in CS

CS 343s: April 10, 2024

mailto:varivera@stanford.edu

Who I am and what I do

Working with philosophers to create ethics
curriculum for undergraduate CS courses

BS in Computer
Science and Math

PhD in Computational Media (HCI)

Research on digital safety of marginalized and vulnerable populations
• Harms & protective behaviors of people who engage in

algorithmically-mediated offline interactions (gig workers, sex
workers, online daters)

• S&P advice given to people in the majority world
• How to design tools/online spaces to support post-harm support

for survivors

What is design?

https://courses.cs.washington.edu/courses/cse440/18au/slides/CSE440-01-Introduction.pdf

Core design skills

To frame, or reframe, the problem and objective

To create and envision alternatives

To select from those alternatives

To synthesize a solution from all the relevant constraints

To visualize and prototype the intended solution

Bill Moggridge

https://courses.cs.washington.edu/courses/cse440/18au/slides/CSE440-01-Introduction.pdf

Understanding
people

Synthesis

Iterative
prototyping

Design thinking

Empathize
(Needfinding)

Define Ideate Prototype Test

Research users’
needs to

understand the
problem and set

aside your
assumptions

about the world

Analyze and
synthesize

information about
users to define

the core
problems. Create
personas to keep

your approach
human-centered

Brainstorm
alternative ways

to view the
problem and

identify innovate
solutions

Identify the best
possible solution
for your problem
and create quick
“drafts” – scaled

down,
inexpensive
versions of a

product

Try out your
prototype with
real users. This

might lead to new
insights that lead

you to reframe the
problem &
solutions

https://www.interaction-design.org/literature/topics/design-thinking.

https://www.interaction-design.org/literature/topics/design-thinking.

Why understand users?

• You are not everyone, you are not the only user
• Engineers often make default choices that leave people out:
• Automobile crash test dummies are designed to match the anatomy of

70kg adult man, excluding much of the population.
• Face recognition technologies fail to account for diverse race and gender

profiles
• Assumption that smartphones have only a single user, which may not

hold for parents sharing devices with their children or people in lower-
income or non-US contexts
• Security and privacy advice for users often rests on this assumption

Georgetown COSC4850, Prof. Elissa Redmiles

Understanding users is important for
developing PLs
• Want to limit burden on users
• Understand user behavior that could introduce security flaws
• Reduce programmers’ cognitive load when using your language
• Create something people want to use that solves a problem

Discussion (5 minutes): Turn to your neighbor and brainstorm some potential
usability limitations in some of the programming languages you use. Be ready to
share your responses

Many ways to collect information to understand users

Observe
• Ethnography
• Think aloud
• Content Analysis

Inquire
• Qualitative

• Interviews
• Focus groups
• Diary studies

• Quantitative
• Surveys

Experiment
• Surveys
• In-lab or in the field

• Behavioral economics
• A/B tests

Georgetown COSC4850, Prof. Elissa Redmiles

Agenda

• What (Empathize/Needfinding)
• Tasks
• Needs

• How (Approach/skills)
• Observations
• Interviews

• Synthesis (Define)
• Personas – understanding/summarizing what you learn about people
• How might we questions – frame a brainstorm

What
What are we trying to learn about people?

• What (Empathize/Needfinding)
• Tasks
• Needs

Two things we might be interested in when
needfinding:

Understanding how people use an existing product/piece of software

Uncovering broad needs; eliciting new perspectives

Task analysis

• A user experience (UX) research method for mapping out how
users complete a specific task using a product or software
• Helps identify challenges users might experience when carrying

out a task

Task analysis

1. Who is going to use the system?
2. What tasks do they now perform? What tasks are desired?
3. How are the tasks learned? Where are the tasks performed?
4. What is the relationship between people & data? What

other tools do people have?
5. How do people communicate with each other? How often

are the tasks performed?
6. What are the time constraints on the tasks? What happens

when things go wrong?

Georgetown COSC4850, Prof. Elissa Redmiles

What can task analysis help with?

• Compare different design alternatives
• Consider how features of a system/interface work together
• Identify specific parts of a system/interface that are challenging to

use and could be improved

• What (Empathize/Needfinding)
• Tasks
• Needs

Broad needfinding

• What does the user need?
• What are their goals?
• How do they use technology to achieve those goals?
• What challenges do they face in trying to achieve those goals with

technology?

Easier said than done. People are not cognizant of their needs.
This is called functional fixedness

Identifying needs is challenging

• Beware of skimming the surface
• This is the biggest needfinding failure among students and

designers/engineers

• Symptoms
• Describing only what is visible. Such conclusions as the most obvious

ones to draw
• Assuming the tasks are fixed, rather than the needs
• Recommendations are local tweaks to the environment

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

Needs are verbs, not nouns

• Nouns assume the solution:
• “She needs a ladder”

• Verbs open up many possible solutions:
• “She needs to grab all her items before leaving”

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

Observation vs. Interpretation

• A common error is to mix up what you see with what you interpret
• Start with what you see (observation):
• What’s the environment or activity that’s framing this behavior
• What’s out of frame that might be important

• Then interpret, why are you seeing what you see?

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

Interpretation

• Ask yourself why you think something happened
• Suggest a reason
• Ask yourself why that reason exists and matters
• Recurse…

• Aim to produce needs

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

Achieving breadth

• Often needfinding results in observations that focus on what
people see and do
• Make sure you also consider what they think and feel

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

How
How we learn things about people?

• How (Approach/skills)
• Observations
• Interviews

Observation

A research method, rooted in the social sciences, that is used to
understand how users interact with a product or system by closely
watching how people use the product or interface in a real-
world or controlled environment.

https://www.interaction-design.org/literature/article/how-to-
conduct-user-observations

Observation

Controlled setting
Example: Think aloud
• Takes placed in a lab
• Structured: Researcher has a list

of things they want to observe
• How users login to a platform
• Number of mistakes users make

when completing a task

Real-world setting
Example: Ethnography
• Done in the field
• Researchers might go live with

the people they want to learn
about
• Very useful for understanding

how people behave in their
natural environment
• Much less structure & higher cost

(time)

• How (Approach/skills)
• Observations
• Interviews

Interviews
Interviews involve asking participants a set of evaluation questions and
hearing the participants’ point of view in their own words.

Interviews vary in structure/precision
• Informal unstructured interviews

• Typically happen “in the field”
• General topic interviews

• You have a list of topics you want to cover, but no specifically phrased
questions

• Semi-to-fully structured interviews
• You have an interview protocol consisting of specifically phrased questions.
• In a semi-structured interview you can paraphrase a little + adjust order

based on the conversation
• In a fully-structured interview you follow the protocol exactly

Georgetown COSC4850, Prof. Elissa Redmiles

Interviews are useful…

When there is not much existing work on a given
problem, so you wouldn’t know
• what to ask (or what answer choices to give) on a

survey
• What interventions to design, implement and test in

an A/B test

You want to understand the “why” – quantitative
data has a harder time giving you the why

When you want to delve into depth about a topic, an
experience, a program
When reading and writing skills are limited

https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

How To Do Interviews

• Draft your protocol
• Practice
• Recruit
• Interview
• Analyze
• Report

Georgetown COSC4850, Prof. Elissa Redmiles

What to write questions about

• Consider your research questions. Outline the broad
areas of knowledge that are relevant to answering these
questions
• Create a series of sub-questions tied to each research

question / area of knowledge to fill the gaps and get the
data you need to answer those research questions +
move to the next step of your research process.

https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

Examples: Broad areas of knowledge

Research question: How do people protect themselves from online
hate and harassment when using social media?
• Types of social media people use
• Types of online hate and harassment they experience
• Steps people take to protect themselves
• Tools/technologies they use to protect themselves
• Limitations of those technologies

Types of questions
• Direct questions:

• Do you find it difficult to avoid online harassment?
• Are you happy with existing mechanisms to protect against online harassment?

• Indirect questions:
• What has your experience been using X, Y, and Z tools to protect against online harassment?
• How have those experienced shaped your use of the Internet?

• Structuring questions:
• ‘I would now like to move on to a different topic’.

• Follow-up questions: getting the interviewee to elaborate his/her answer
• ‘Could you say some more about that?’; ‘What do you mean by that . . .?’

• Probing questions: following up what has been said through direct questioning.
• Specifying questions:

• ‘What did you do then?’
• ‘How did your strategies change based on X event?’

• Interpreting questions: make sure you understand what they mean
• Is it fair to say that you don’t feel moderators of online communities understand the types of harassment

you’ve experienced so they’re not well-equipped to remove content?

Adapted from: https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

Probing is the process of asking follow-up questions to dig deeper in order to
obtain useful, meaningful information

Key element of interviews: Follow ups +
Probes

Example:
“What do you like best about the CS program at Stanford?”

Response: “I like everything.”

Probe 1: “What one thing really stands out?”
 Response: “My professor in the algorithms class.”

Probe 2: “What did you like about that professor?”
Response : “I liked that he had famous people come talk to us.”

Probe 3: “Really? Tell me more…?”
Response : “It was interesting to hear their perspectives. I heard some things I hadn’t
considered before.”

Probe 4: “What is one thing that you learned from them?”
Adapted from https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

Good Question Practices
• Anchored to experiences

• Helps with memory
• The point of a qualitative interview is to let the respondent tell their own story on their own terms

• Open Ended
• Ask “how” questions rather than “why” questions to get stories of process rather than acceptable

“accounts” of behavior. “How did you come to join this group . . .?”
• THIS IS NOT A SURVEY! The guide acts as a prompt, reminding you of necessary topics to cover,

questions to ask and areas to probe. As such, it should be simple so that your primary focus can
stay on the respondent. It’s best to memorize your guide!

• Ask one question at a time
• Adapt to the participants’ language
• Simple, easy, short questions; no jargon
• Be neutral, consider couching language for sensitive topics

• “People have many different things they do in their free time. Could you tell me a bit about how
you use substances in your free time?”

The best questions are those which elicit the
longest answers from the respondent. Do not
ask questions that can be answered with one
word.

https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
https://nsuworks.nova.edu/tqr/vol15/iss3/19/

“Bad” Question Practices

• Leading
• Impossible

• Beyond expertise
• Functional fixedness

• Use very very rarely
• Closed

• Binary
• Counts / likerts

• Hypothetical

Georgetown COSC4850, Prof. Elissa Redmiles

Activity (10 minutes): Interview protocol

How people interact with technology and what challenges they
experience.
Today, spend 5 minutes
1. writing out broad areas of knowledge you want to learn about

from your interviewee
2. different types of questions you might ask to learn about those

areas of knowledge

Then, you’ll get 5 minutes to share your protocol with the person
sitting next to you. I’ll let you know when to move on to this.

Slide courtesy of Prof. Ben Wiedermann for CS 111 at HMC

Structuring Interviews

• Give context on the interview (without priming)
• Warm the participant up before launching into sensitive questions
• Provide transition between major topics, e.g., "we've been talking

about (some topic) and now I'd like to move on to (another topic);"

Georgetown COSC4850, Prof. Elissa Redmiles

10 things to keep in mind while interviewing
1. Be polite

1. Greet the interviewee in a culturally appropriate way
2. Explain the purpose of the interview
3. Give them an opportunity to ask you questions about the study and their participation
4. If recording, ask for their permission to begin recording
5. Thank the interviewee at the end and ask them again if they have any questions

2. Be considerate
1. Try to stay on time.

3. Be personable – friendly conversation helps break the ice
1. In your interview, be unconditionally positive

4. Be engaged
1. Follow the flow of conversation
2. Listen!! Don’t only look at your interview guide
3. Ask followup questions
4. Pick up phrases the interviewee has used and use them for your questions

Prof. Ben Wiedermann for CS 111 at HMC
https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf

10 things to keep in mind while interviewing
5. Be gentle

1. Let people finish their thought. Don’t be afraid of silence
6. Be balanced

1. Don’t talk too much!
2. Never answer a question for the interviewee or give them an example answer

7. Be sensitive
1. Treat interviewees as your equal. Never pass judgment on anything they say

8. Be open
1. Be flexible and respond to what the interviewee thinks is important

9. Know how to steer the interview
1. Be prepared & know what you want to find out

10. Be critical
1. Gently challenge inconsistencies in interviewees responses to understand more

Prof. Ben Wiedermann for CS 111 at HMC
https://www.nixdell.com/classes/HCI-Spring-2018/Lecture4.pdf

https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf

Final reminders about interviews

• Your job is to follow, not lead
• Hold off on solutions and answers
• Don’t be afraid of silence

Prof. Ben Wiedermann for CS 111 at HMC

Synthesis
How do we make sense of data about people to build something useful that
meets their needs?

• Synthesis (Define)
• Personas – understanding/summarizing what you learn about people
• How might we questions – frame a brainstorm

User personas

• Not every person on a product team has time or should directly
talk to “users”
• (And, you don’t always need new research!)

• It’s quite a burden to get asked about your experience over and over and over again

• A persona is a fictional yet realistic representation of a
specific user or user group that helps designers and
developers understand their target users’ needs, goals, and
behaviors
• “use of abstract representations of users originated in marketing” [1]
• “Personas were originally proposed in the late 1990s by Cooper as an

effective and efficient way of engaging designers and developers with the
characteristics and needs of their users” [2]

https://dl.acm.org/doi/pdf/10.1145/997078.997089
https://dl.acm.org/doi/pdf/10.1145/3419249.3420135

Slide: Georgetown COSC4850, Prof. Elissa Redmiles

https://dl.acm.org/doi/pdf/10.1145/997078.997089
https://dl.acm.org/doi/pdf/10.1145/3419249.3420135

User personas
A fictional representation of a user
that includes details about their:
• Education
• Lifestyle
• Interests
• Age
• Values
• Goals
• Needs
• Limitations
• Desires
• Attitudes
• Patterns of behaviors

https://www.interaction-design.org/literature/article/personas-why-and-how-
you-should-use-them

Personas as proxies in design

We can’t talk to everyone we’re designing for, so personas are used
as a proxies in design

Major function of a persona is to enable designers and engineers to
break free of the tendency to design for themselves

Georgetown COSC4850, Prof. Elissa Redmiles

Personas Case Study: Rust

• The situation
• Who: the Rust language “async foundations” team

• A distributed group of (mostly) volunteers
• When: 2021
• What: long-term planning for Rust async

• What did they do?
• They made personas!
• https://nikomatsakis.github.io/wg-async-

foundations/vision/characters.html

https://nikomatsakis.github.io/wg-async-foundations/vision/characters.html
https://nikomatsakis.github.io/wg-async-foundations/vision/characters.html

Personas Practice (10 minutes, in pairs)
1. Choose a programming language
2. Create two personas to guide future changes
• Occupation (HS student, college student, researcher?, developer?,

manager? non-dev worker?)
• Educational background?
• Experience with the language?
• Future goals?
• Think outside the box!
• Try to find two personas that are meaningfully different and “span” the

space
3. Summarize the personas on whiteboards
4. Next, we’ll share them

Inspired by: https://github.com/uwcse440/web-cse440-sp19/blob/master/slides/CSE440-08-TaskAnalysis.pdf

Persona Discussion (5 minutes)
• With another pair
• Take turns explaining your personas
• Critique the personas
• Which personas seem left out?

• (this is unavoidable---you only made two!)
• Is there an adequate level of detail?
• Do you feel like you have a good understanding of the user?
• Would it be easy/useful to refer to this persona while designing a system

or feature?
• What is an example language feature that you might imagine one of the personas

having an opinion about?

Inspired by https://github.com/uwcse440/web-cse440-sp19/blob/master/slides/CSE440-08-TaskAnalysis.pdf

• Synthesis (Define)
• Personas – understanding/summarizing what you learn about people
• How might we questions – frame a brainstorm

“How might we…?”

“How might we…?” statements help brainstorm potential problem
spaces and can generate lots of creative ideas

• How might we ensure more people pay their taxes before the
deadline?
• How might we help employees stay productive and healthy when

working from home?
• How might we make customers feel that their information is safe

and secure when creating an account?

https://www.nngroup.com/articles/how-might-we-
questions/

The Goldilocks of How Might We

• A good “How might we” question is:
• Not so broad that it is inapproachable

• How might we help people organize all their digital media?
• Not so narrow that it suggests a solution

• How might we help people retrieve their favorite digital media with just a click
• In a happy middle ground

• How might we help weekend extreme sports enthusiasts organize their digital
media?

Adapted from Michael Bernstein’s CS 247 slides:
https://hcicourses.stanford.edu/cs247/2016/slides/07-needfinding.pdf

Case study: D and Rust

• Goal: to optimize both performance and safety
• HMW 1: How might we make garbage collection performant?

• Presumes a solution that in this timeline was not ultimately adopted (too strict). If
people had asked this question they would not have come up with Rust. (Too
narrow)

• HMW 2: How might we ensure C++ is memory safe?
• Would have led to a bunch of static analysis tools for C++ probably wouldn’t have

been very impactful. This also wouldn’t have led to Rust. (too broad)
• HMW 3: How might we write code that has type control over memory management

but is also memory safe? à leads to Rust
• HMW 4: How might we test whether some C++ code might be memory unsafe? à

leads to Valgrind

Recap

• What (Empathize/Needfinding)
• Tasks
• Needs

• How (Approach/skills)
• Observations
• Interviews

• Synthesis (Define)
• Personas – understanding/summarizing what you learn about people
• How might we questions – frame a brainstorm

