
Week 2: Internal DSLs in Python

April 8, 2024

1

DSL of the day: ggplot2

2

DSL of the day: ggplot2

2

DSL of the day: ggplot2

2

DSL of the day: ggplot2

2

Internal DSLs live in a host language

Internal DSLs. . .

• are embedded within a host language

• like a library

• have syntax and semantics that are a subset of the host
language’s

• ok: sound @ Volume(2)

• not ok: sound <> Volume(2)

• are generally more accessible

• interoperability through host

• metaprogramming (functions, classes, . . .) through host

• familiar syntax

• rely on the extensibility of the host

3

Internal DSLs live in a host language

Internal DSLs. . .

• are embedded within a host language

• like a library

• have syntax and semantics that are a subset of the host
language’s

• ok: sound @ Volume(2)

• not ok: sound <> Volume(2)

• are generally more accessible

• interoperability through host

• metaprogramming (functions, classes, . . .) through host

• familiar syntax

• rely on the extensibility of the host

3

Internal DSLs live in a host language

Internal DSLs. . .

• are embedded within a host language

• like a library

• have syntax and semantics that are a subset of the host
language’s

• ok: sound @ Volume(2)

• not ok: sound <> Volume(2)

• are generally more accessible

• interoperability through host

• metaprogramming (functions, classes, . . .) through host

• familiar syntax

• rely on the extensibility of the host

3

Internal DSLs live in a host language

Internal DSLs. . .

• are embedded within a host language

• like a library

• have syntax and semantics that are a subset of the host
language’s

• ok: sound @ Volume(2)

• not ok: sound <> Volume(2)

• are generally more accessible

• interoperability through host

• metaprogramming (functions, classes, . . .) through host

• familiar syntax

• rely on the extensibility of the host

3

Some Python Internal DSLs

4

Some Python Internal DSLs

4

Some Python Internal DSLs

4

Some Python Internal DSLs

4

Today

How can we extend Python

to create internal DSLs?

5

Agenda

Custom Operators

Custom Blocks

Custom Definitions

Deferred Execution

6

Custom Operators

How can this code

(A & B) - C

apply to sets instead of numbers?

7

Operator Overloading

In Python, operators on user-defined classes dispatch to specific

methods.

The Python data model documents every operator and its

method(s).

The expression a + b is evaluated as a.__add__(b).

(If this is unimplemented, then Python tries b.__radd__(a).)

8

https://docs.python.org/3/reference/datamodel.html

A laundry list

+ __add__

- __sub__

* __mul__

/ __truediv__

// __floordiv__

% __mod__

@ __matmul__

** __pow__

+= __iadd__
...

+ __radd__
...

+ __pos__

- __neg__

~ __invert__

& __and__

| __or__

^ __xor__

<< __lshift__

>> __rshift__

if __bool__

() __call__

in __contains__

[] __getitem__

len __len__

!= __ne__

== __eq__

>= __ge__

> __gt__

<= __le__

< __lt__

9

Live example: multiset

Our goal:

1 >>> a = Multiset(1, 1, 2)

2 >>> b = Multiset(1, 4, 5)

3 >>> a + b

4 Multiset(1, 1, 1, 2, 4, 5)

5 >>> a | b

6 Multiset(1, 1, 2, 4, 5)

7 >>> a & b

8 Multiset (1)

9 >>> a - b

10 Multiset(1, 2)

10

Custom Blocks

Some compound statements can be customized

1 if condition:

2 # code

3

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:

8 # code

9

10 # others: while , match , try

You can customize for by defining __iter__ for collection.

You can also customize with. . .

11

Some compound statements can be customized

1 if condition:

2 # code

3

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:

8 # code

9

10 # others: while , match , try

You can customize for by defining __iter__ for collection.

You can also customize with. . .

11

Some compound statements can be customized

1 if condition:

2 # code

3

4 for item in collection:

5 # code

6

7 with open("out.txt", "w") as f:

8 # code

9

10 # others: while , match , try

You can customize for by defining __iter__ for collection.

You can also customize with. . .

11

With statements

1 with open("out.txt", "w") as f: # opens file

2

3 # code (manipulates file)

4

5 # file is implicitly closed

6 # (even with an exception)

7 # post -close code

This works because open("out.txt", "w") is a context manager.

It implements __enter__ and __exit__.

• __enter__(self) -> Any

• return value is bound to f in “as f.”

• __exit__(self, exception info) -> bool

• return value: whether to re-raise the exception

12

With statements

1 with open("out.txt", "w") as f: # opens file

2

3 # code (manipulates file)

4

5 # file is implicitly closed

6 # (even with an exception)

7 # post -close code

This works because open("out.txt", "w") is a context manager.

It implements __enter__ and __exit__.

• __enter__(self) -> Any

• return value is bound to f in “as f.”

• __exit__(self, exception info) -> bool

• return value: whether to re-raise the exception

12

With statements

1 with open("out.txt", "w") as f: # opens file

2

3 # code (manipulates file)

4

5 # file is implicitly closed

6 # (even with an exception)

7 # post -close code

This works because open("out.txt", "w") is a context manager.

It implements __enter__ and __exit__.

• __enter__(self) -> Any

• return value is bound to f in “as f.”

• __exit__(self, exception info) -> bool

• return value: whether to re-raise the exception

12

With statements

1 with open("out.txt", "w") as f: # opens file

2

3 # code (manipulates file)

4

5 # file is implicitly closed

6 # (even with an exception)

7 # post -close code

This works because open("out.txt", "w") is a context manager.

It implements __enter__ and __exit__.

• __enter__(self) -> Any

• return value is bound to f in “as f.”

• __exit__(self, exception info) -> bool

• return value: whether to re-raise the exception

12

With statements

contextlib.contextmanager is a convenience decorator1 for

implementing a context manager.

It converts a one-yield generator into a context manager.

1 @contextlib.contextmanager

2 def my_manager ():

3 # set up

4 try:

5 yield f # run block

6 finally:

7 # clean up

1We’ll define this soon!

13

Live example: terminal color

Our goal:

1 >>> with(Color.RED): print ("this is red")

2 this is red

3 >>> print("this is black ")

4 this is black

5 >>> with(Color.BLUE): print ("this is blue")

6 this is blue

14

Custom Definitions

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

• =⇒ DSLs override similar operators: @=, <<=, . . .

• An example from Magma (a Python hardware DSL):

But, definitions can be customized.

• Function definitions: def foo(..):

• Class definitions: class Foo(..):

15

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

• =⇒ DSLs override similar operators: @=, <<=, . . .

• An example from Magma (a Python hardware DSL):

But, definitions can be customized.

• Function definitions: def foo(..):

• Class definitions: class Foo(..):

15

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

• =⇒ DSLs override similar operators: @=, <<=, . . .

• An example from Magma (a Python hardware DSL):

But, definitions can be customized.

• Function definitions: def foo(..):

• Class definitions: class Foo(..):

15

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

• =⇒ DSLs override similar operators: @=, <<=, . . .

• An example from Magma (a Python hardware DSL):

But, definitions can be customized.

• Function definitions: def foo(..):

• Class definitions: class Foo(..):

15

Customizable assignment?

In Python, assignment (=) cannot be overloaded.

• =⇒ DSLs override similar operators: @=, <<=, . . .

• An example from Magma (a Python hardware DSL):

But, definitions can be customized.

• Function definitions: def foo(..):

• Class definitions: class Foo(..):

15

Decorator syntax

The following is an instance of a decorator applied to a function

definition.

1 @my_decorator

2 def foo (..):

3 # code

It is essentially equivalent to the following:

1 def foo (..):

2 # code

3 foo = my_decorator(foo)

16

Decorators are widespread

My favorite stdlib decorator:

1 @dataclasses.dataclass

2 class Var(Expr):

3 name: str

Other examples:

• staticmethod (method)

• functools.total_ordering (class)

• functools.wraps (function)

• contextlib.contextmanager (function)

• . . . full list . . .

17

https://wiki.python.org/moin/Decorators

Decorators are widespread

My favorite stdlib decorator:

1 @dataclasses.dataclass

2 class Var(Expr):

3 name: str

Other examples:

• staticmethod (method)

• functools.total_ordering (class)

• functools.wraps (function)

• contextlib.contextmanager (function)

• . . . full list . . .

17

https://wiki.python.org/moin/Decorators

Live example: terminal color

Our goal:

1 @rec_trace

2 def fib(n): return n if n < 2 else return fib(n - 1) +

fib(n - 2)

3 >>> print(fib (3))

4 call fib (3)

5 call fib (2)

6 call fib (1)

7 ret 1 = fib (1)

8 call fib (0)

9 ret 0 = fib (0)

10 ret 1 = fib(2)

11 call fib (1)

12 ret 1 = fib(1)

13 ret 2 = fib (3)

14 2

18

Deferred Execution

Python’s extensibility

Python is extensible. You can:

• customize operator semantics

• customize with-block entry/exit events

• wrap definitions

Python’s extensibility has limits.

• Evaluation order is fixed.

• A + B, A always evaluates before B and before +.

• Precedence is fixed.

• Some operators are not overloadable: =, and, or, not.

• Lambdas are verbose and can’t contain statements.

• lambda x, y: x + y

• Evaluation is eager.

19

Python’s extensibility

Python is extensible. You can:

• customize operator semantics

• customize with-block entry/exit events

• wrap definitions

Python’s extensibility has limits.

• Evaluation order is fixed.

• A + B, A always evaluates before B and before +.

• Precedence is fixed.

• Some operators are not overloadable: =, and, or, not.

• Lambdas are verbose and can’t contain statements.

• lambda x, y: x + y

• Evaluation is eager.

19

Breaking limits through external techniques

We can circumvent Python’s limits with an external tool:

• an AST.

Two steps:

• Use Python’s evaluation semantics to build an AST.

• Later, execute that AST using a custom interpreter.

Some remarks:

• True execution is deferred until after Python’s execution.

• The interpreter(/. . .) is often (but not always) in Python.

• This gives semantic flexibility of an external DSL.

• The does not improve syntactic flexibility very much.

20

Breaking limits through external techniques

We can circumvent Python’s limits with an external tool:

• an AST.

Two steps:

• Use Python’s evaluation semantics to build an AST.

• Later, execute that AST using a custom interpreter.

Some remarks:

• True execution is deferred until after Python’s execution.

• The interpreter(/. . .) is often (but not always) in Python.

• This gives semantic flexibility of an external DSL.

• The does not improve syntactic flexibility very much.

20

Breaking limits through external techniques

We can circumvent Python’s limits with an external tool:

• an AST.

Two steps:

• Use Python’s evaluation semantics to build an AST.

• Later, execute that AST using a custom interpreter.

Some remarks:

• True execution is deferred until after Python’s execution.

• The interpreter(/. . .) is often (but not always) in Python.

• This gives semantic flexibility of an external DSL.

• The does not improve syntactic flexibility very much.

20

Live example: auto-differentiation

Our goal:

1 @formula

2 def f(x, y):

3 return x * x + y

4 # derivative in x: 2 * x

5

6 >>> f(x=2, y=1)

7 5

8 >>> f.deriv("x")(x=2, y=1)

9 4

21

Recap

Custom operators (overloading)

Custom blocks (context managers)

Custom definitions (decorators)

Deferred execution (ASTs for internal DSLs)

The internal lab will exercise all of these skills.

Next class: design!

22

Bonus question

Is SQL an internal DSL?

23

	Custom Operators
	Custom Blocks
	Custom Definitions
	Deferred Execution

