
Week 1: External DSLs

April 3, 2024

Today

What are Domain Specific Languages (DSLs)?

Course Overview

External DSLs
Parsing

Parsing Expression Grammar (PEG)
Abstract Syntax Trees (ASTs)
Execution
Implementing common constructs
Program Correctness
Typing

What are Domain Specific Languages (DSLs)?

In the beginning, ‘machine’ meant domain-specific

Source: vintagecalculators.com

Source: Smithsonian via aes-media.org

Programmable computers could do anything, . . .
if you could wire them

Paul W Shaffer, UPenn, via Wikipedia US Army via Wikipedia

‘Stored Program’ Insight: Programs are Just Data!
Can still do anything; rush towards general purpose languages

UManchester via CHM

HellDragon.eu and Arnold Reinhold via Wikipedia

Still, generality comes at a price

Domain-Specific Languages: Back to Basics

Focusing on a specific domain can enable:
▶ Better expressiveness
▶ Better optimizations
▶ More precise analyses

We won’t be enforcing a sharp distinction with libraries, GUIs, etc.

In digital design

Timing diagram for SPI Bus via Wikipedia

Wavedrom language

In art

A fractal

Context Free language homepage CF program for said fractal

In software development

continuous integration testing (YAML)

Course Parts

Three parts:
1. Technical skills: external DSLs, design, internal DSLs

▶ in-class: lectures, at-home: closed-ended assignments
2. Clinics: somewhat open-ended assignments

▶ work on them in-class and at-home
3. Independent project

▶ open-ended, focus of the course
▶ in-class: feedback and work time
▶ starts early

Assignments

Assignments:
1. External Lab
2. Internal Lab
3. Clinics (2-3)
4. Project

▶ brainstorming
▶ proposal
▶ demo and feedback
▶ presentation
▶ final implementation

Policies

▶ attendance required (studio class, participation grade)
▶ Communication:

▶ website: cs343s.stanford.edu
▶ announcements, Q&A: Ed (sign up!)
▶ instructors mailing list: cs343s@cs.stanford.edu
▶ anonymous feedback form

▶ assignments
▶ submissions: Gradescope (sign up!)
▶ individual submissions, collaboration encouraged
▶ three (integer) late days

▶ office hours on website

cs343s.stanford.edu

External DSLs

▶ An "external" DSL is implemented as a complete language,
with its own syntax and semantics.
▶ Allows non-standard, specialized syntax

▶ Although they are not general purpose, they can implement
programming constructs found in general purpose languages:
▶ variables (common)
▶ functions (occasionally)
▶ control flow (if, while, etc.) (occasionally)

▶ On the other hand, they should have concise syntax for their
particular domain

External DSLs: NetLogo

1 to setup
2 clear -all
3 create - turtles 10
4 reset -ticks
5 end
6

7 to go
8 ask turtles [
9 fd 1 ;; forward 1 step

10 rt random 10 ;; turn right
11 lt random 10 ;; turn left
12]
13 tick
14 end

External DSLs: CSS

1 body {
2 overflow : hidden ;
3 background -color: #000000;
4 background -image: url(images /bg.gif);
5 background - repeat : no - repeat ;
6 background - position : left top;
7 }

Writing an External DSL

1. Parse: analyze the text and determine its gramatical structure
2. Translate: convert the parse tree into an Abstract Syntax Tree

(AST) or other intermediate representation
3. Execute: “run" the program (produce some output, interact

with the user, etc.)

Parsing

▶ Parsing reads in input text, and determines it can be derived
from a set of grammar rules (if at all)

▶ Generally outputs a parse tree: a tree representation of the
rules used to produce the text

▶ Used to check syntax : is the string a correctly structured
statement in the language

Parsing Expression Grammar (PEG)

▶ PEG is language used to specify the grammar of a language
(PEG is a DSL!)

▶ PEG consists of a sequence of definitions (non-terminals)
▶ identifier = expression

▶ At their most basic, expressions can consist of a terminal
("abc", ~r"b.*"), or another definitions
▶ one = "1"
▶ eleven = one one

▶ A terminal matches the exact text, a definition matches if its
expression matches

▶ The first definition is the "starting expression", and is used to
match the entire text.

Parsimonious PEG Expressions

Let e1 and e2 be arbitrary expressions
▶ Literal: “ ” ("1")
▶ Python-style Regex: ~r“regex”ilmsuxa (~r"[a-z]"i)
▶ Sequence: e1 e2 ("1" "1")
▶ Choice: e1 / e2 ("1" / "2")
▶ Grouping: (e1) (("1" / "2") "1" vs "1" / ("2" "1"))
▶ Optional: e1? ("1"?)
▶ Zero-or-more: e1* ("1"*)
▶ One-or-more: e1+ ("1"+)
▶ Exactly-n: e1{n} ("1"{n})
▶ Lookahead: &e1 (&"1")
▶ Negative Lookahead: !e1 (!"1")

Parse Trees
The parser (e.g. parsimonious) outputs a parse tree: a tree
representation of the rules which matched the string
Example: Parsing 11

eleven = one one
one = "1"

⇒
eleven

oneone

Example: Parsing #11

expr = number? eleven
number = "#"
eleven = one one
one = "1"

⇒

expr

eleven

oneone

?

.number

PEG is unambiguous: every string has exactly 0 or 1 valid parse
trees

Recursion

Rules may be recursive, meaning they reference themselves within
their definitions
Example: ones = one ones?

However, PEG does NOT allow the left-most expression in a
sequence to be recursive (e.g. no left recursion)
Example: ones = ones one is NOT allowed

Live Coding: Arithmetic Parsing

Precedence

Example: 1 + 2 * 3

*

3+

21

+

*

32

1

Associativity

Example: 1 - 2 - 3 - 4

-

4-

3-

21

-

-

-

43

2

1

Abstract Syntax Trees (ASTs)

▶ Parse trees are not nice to work with:
1. they contain many useless nodes (e.g. whitespace)
2. may not be the exact structure you want

▶ Instead, we convert the parse tree into an Abstract Syntax
Tree (AST)

▶ AST: a tree where interior nodes represent operators, and
their children represent their operands

Example: Vector Addition

Example: [1, 2] + [3, 4]

expr = add_expr / vector
add_expr = vector plus expr
vector = "[" num_list "]"
num_list = (number comma)* number
number = ~r"[0-9]+" ws
comma = "," ws
ws = ~r"\s*"

Example: Vector Addition
Example: [1, 2] + [3, 4]

expr

add_expr

expr

vector

]num_list

4*

,3

[

plusvector

]num_list

2*

,1

[

Example: AST

Example: [1, 2] + [3, 4]

+

vector

4][3,

vector

2][1,

Converting Parse Trees to ASTs in Parsimonious

▶ General idea: perform a depth first traversal of the tree and
convert each node into AST nodes

▶ Parsimonious steps:
1. Sub-class the NodeVistor class
2. Implement visitor methods for each definition
3. Call visit on the parse tree

class VectorVisitor(NodeVisitor):
def visit_expr(self, node: Node, visited_children: list[Any]):

...

Converting Parse Trees to ASTs in Parsimonious

▶ General idea: perform a depth first traversal of the tree and
convert each node into AST nodes

▶ Parsimonious steps:
1. Sub-class the NodeVistor class
2. Implement visitor methods for each definition
3. Call visit on the parse tree

class VectorVisitor(NodeVisitor):
def visit_expr(self, node: Node, visited_children: list[Any]):

...

Node object representing the matching definition

Converting Parse Trees to ASTs in Parsimonious

▶ General idea: perform a depth first traversal of the tree and
convert each node into AST nodes

▶ Parsimonious steps:
1. Sub-class the NodeVistor class
2. Implement visitor methods for each definition
3. Call visit on the parse tree

class VectorVisitor(NodeVisitor):
def visit_expr(self, node: Node, visited_children: list[Any]):

...

List of results from visiting this nodes children

Live Coding: Parse Tree → AST

ASTs: What now

Now we have an AST... but what can we do with it?
1. Analyze and/or optimize it...
2. Translate it into a different AST / IR...
3. Execute it...

Execution

There are three main ways to execute a DSL:
1. Compilation: Convert the AST into machine code, which can

be executed
2. Transpilation: Convert the AST into an equivalent program in

a different language (e.g. C)
3. Interpretation: Write a program which executes over the AST

directly

Note that we mean execution in a broad sense (e.g. producing an
output, interacting with the user, etc.)

Execution

There are three main ways to execute a DSL:
1. Compilation: Convert the AST into machine code, which can

be executed
2. Transpilation: Convert the AST into an equivalent program in

a different language (e.g. C)
3. Interpretation: Write a program which executes over the AST

directly

Note that we mean execution in a broad sense (e.g. producing an
output, interacting with the user, etc.)

Why Interpreters

▶ Fairly straightfoward to write (in comparison to a compiler or
transpiler)

▶ Often easier to debug
▶ Many DSLs aren’t performance critical
▶ Can use features of the "host" language (e.g. memory

management)

Writing a Tree-Walking Interpreter

Tree-Walking Intrepreter: Traverse the AST, executing as you go.
▶ Perform some depth-first traversal of the AST
▶ When visiting a node, perform the correct computation using

its computed children

Example: [1, 2] + [3, 4]

+

: [4, 6]

vector

: [3, 4]

4][3,

vector

: [1, 2]

2][1,

Example: [1, 2] + [3, 4]

+

: [4, 6]

vector

: [3, 4]

4][3,

vector: [1, 2]

2][1,

Example: [1, 2] + [3, 4]

+

: [4, 6]

vector: [3, 4]

4][3,

vector: [1, 2]

2][1,

Example: [1, 2] + [3, 4]

+: [4, 6]

vector: [3, 4]

4][3,

vector: [1, 2]

2][1,

Live Coding: Evaluating Arithmetic

Tips and Tricks

▶ Use semantics to guide your parsing and AST (e.g. don’t
want a right-leaning parse tree for left-associative operations)
▶ Stage 1: Design the AST from the semantics
▶ Stage 2: Design the parser from the AST

▶ Think about whether or not evaluation ordering is defined:
(e.g. foo(print(1), print(2)))

▶ Keep it lean: don’t implement constructs that aren’t necessary
for your domain

Expressions vs Statements

Many languages differentiate between expressions, pieces of code
which return a value, and statements, pieces of code which do not.

For example, in python:
▶ x = 5 is a statement

▶ y = (x = 5) + 2 ?
▶ 5 + 2 is an expression

In many languages, all expressions are statements, but not all
statements are expressions.

Variables
Example: let x = 5
Use a dictionary to track “bindings”:

1 class Let(Stmt):
2 name: str
3 value: expr
4

5 class Variable (Stmt):
6 name: str
7

1 def interpret_let (ast_node , bindings):
2 result = interpret (node.value)
3 bindings [ast_node .name] = result
4

5 def interpret_var (ast_node , bindings):
6 return bindings [ast_node .name]
7

Function Declarations
Example:

1 func foo(arg1 , arg2 , arg3) {
2 body
3 return arg1;
4 }
5

Implementation:
1 class Function (Stmt):
2 name: str
3 params : list[str]
4 body: list[Stmt]
5

1 def interpret_func_declaration (ast_node , bindings ,
declarations):

2 declarations [ast_node .name] = ast_node
3

Function Calls
Example:

1 foo (1, 2, 3)
2

Implementation:
1 class FunctionCall (Expr):
2 name: str
3 args: list[Expr]
4

1 def interpret_func_call (ast_node , bindings ,
2 declarations):
3 func = declarations [ast_node .name]
4

5 for (param_name , arg) in
6 zip(func.params , ast_node .args):
7 arg_value = interpret (arg , bindings ,
8 declarations)
9 bindings [param_name] = arg_value

10

11 for stmt in func.body:
12 interpret (stmt , bindings , declarations)
13

Control Flow
1 if (x == 5) {
2 ...
3 } else {
4 ...
5 }
6

1 class If(Stmt):
2 condition : Expr
3 true_block : list[Stmt]
4 false_block : list[Stmt]
5

1 def interpret_if (ast_node , bindings , declarations):
2 cond_value = interpret (ast_node .condition , ...)
3 if cond_value :
4 for stmt in ast_node . true_block :
5 interpret (stmt , ...)
6 else:
7 for stmt in ast_node . false_block :
8 interpret (stmt , ...)
9

Program Correctness

▶ Some programs may not be correct...
▶ Some errors can be found before running the program (i.e.

statically), but others can only be caught during execution
(i.e. dynamically)

▶ We have already seen how parsing can catch some errors:
▶ 4 & 8 (0

▶ But some errors can’t be caught by the parser...
▶ let for = 5;

Turtle DSL
▶ Let

1 x = 5;
2 y = " circle ";
3 t = turtle ;
4

▶ Ask

1 ask t {
2 shape = y;
3 color = "red";
4 }
5

▶ ontick

1 ontick t {
2 forward (x);
3 right(random (50));
4 }
5

Turtle DSL: Error

▶ Let

1 x = 5;
2 y = " circle ";
3 t = turtle ;
4

▶ Ask

1 ask t {
2 color = 5; # Error! 5 is not a color!
3 }
4

Static vs Dynamic error checking

In general, catching errors statically is prefered to catching them
dynamically. Why? Consider the following code:

1 for (int i = 0; i < 1 ,000 ,000; i++) {
2 ... long running code ...
3 }
4

5 int x = "hello";

...but sometimes Dyanmic is better
▶ Sometimes, static isn’t possible: we need the actual value to

find the error
▶ 5 / x # if x is 0, need to throw an error

▶ Sometimes, static is possible, but it is really hard...
1 if (b):
2 x = 5;
3 else:
4 x = "hello";
5

6 match x:
7 case int ():
8 ...
9 case float ():

10 ...
11

▶ Communication to the programmer: At runtime, we have
concrete values we can give to the programmer!

Typing

A common type of error checking is called typing.

Types are sets of values, which give information about what
operations are permitted on those values.

For example, we might use the type int for integers, or the type
Function(int, int) → int for functions which take two integers, and
return an integer.

A simple type system

Lets consider a small language, with numbers and strings.

1 let x = 5;
2 let y = "hello";
3 let z = x * 5 + 3;
4

Type checking

What should the following code do?
1 let x = 5;
2 let y = "hello";
3 print(x + y)

Some options:
▶ Define addition over combinations of integers and strings
▶ Throw an error at

▶ compile-time
▶ run-time

Type checking

What should the following code do?
1 let x = 5;
2 let y = "hello";
3 print(x + y)

Some options:
▶ Define addition over combinations of integers and strings
▶ Throw an error at

▶ compile-time
▶ run-time

Static vs Dynamic Typing

▶ Static Typing: Types are known and checked at compile-time
▶ C, C++, Rust, Haskell...

▶ Dynamic Typing: Types are known and checked at run-time.
▶ Python, Javascript...

Static vs Dynamic Typing Advantages

▶ Static Typing:
▶ Checks are done at compile time (no need to run the code)

▶ Dynamic Typing:
▶ More flexible (e.g. python functions can automatically accept

any argument, duck typing, etc.)

Implementing a type checker

Very basic type checker: Traverse the AST, and check that the
types of function/operator arguments match.

Type checking function calls

1 def add(x: int , y: int) -> int { ... }
2

3 add (5, 6)
4

Type checking function calls

add

65

add: Function(int, int) -> int

6: int5: int

add: Function(int, int) -> int
Does 5.ty == int and 6.ty == int?

6: int5: int

Type checking function calls

add

65

add: Function(int, int) -> int

6: int5: int

add: Function(int, int) -> int
Does 5.ty == int and 6.ty == int?

6: int5: int

Type checking function calls

add

65

add: Function(int, int) -> int

6: int5: int

add: Function(int, int) -> int
Does 5.ty == int and 6.ty == int?

6: int5: int

Type checking function calls

add

6"hello"

add: Function(int, int) -> int

6: int"hello": string

add: Function(int, int) -> int
Does "hello".ty == int and 6.ty == int?

6: int"hello": string

Type checking function calls

add

6"hello"

add: Function(int, int) -> int

6: int"hello": string

add: Function(int, int) -> int
Does "hello".ty == int and 6.ty == int?

6: int"hello": string

Type checking function calls

add

6"hello"

add: Function(int, int) -> int

6: int"hello": string

add: Function(int, int) -> int
Does "hello".ty == int and 6.ty == int?

6: int"hello": string

Live Coding: A turtle type-checker

We will live code a type checker for a small turtle language (similar
to Logo).

	What are Domain Specific Languages (DSLs)?
	Course Overview
	External DSLs
	Parsing
	Abstract Syntax Trees (ASTs)
	Execution
	Implementing common constructs
	Program Correctness
	Typing

