
CS 343S Project: Language Design and Implemen-
tation

1 Deliverables and Due Dates

Below are short descriptions and deadlines for each component of the term
project. The following sections provide more details on the expected contents
of the deliverables.

Component Deadline

Brainstorming Tuesday, April 16th, midnight
Proposal Tuesday, April 30th, midnight
Demo In-class May 20th and 22nd
Presentation In-class June 3rd and 5th
Final Implementation Thursday, June 6th, 2024, midnight

Table 1: Project deadlines

2 Summary

The deliverables are designed to guide your project direction and allow you
to receive feedback at multiple points in time. That being said, you are not
restricted to prior deliverables (i.e. you can write a proposal for an idea that
you did not submit for brainstorming, and you can change the language sketch
from your proposal while implementing the language). There are no teams
for final projects. You are expected to implement your own project, and
will receive feedback both from the staff and from a small group of your peers.
Lecture periods during weeks 7-9 will be ”Studio” time for you to work on
your projects and ask for feedback outside of the concrete deliverables. You
are welcome to implement your project in any language you prefer, you are not
required to use the Python tools we will teach in the first few weeks of class.

3 Brainstorming

Your submission should include 3-5 short problem descriptions that you believe
might be eloquently solved by a domain-specific language. Each problem de-
scription do not need to be longer than a paragraph (though you are welcome
to write more), and should describe a problem domain, as well as at least
one concrete example of a problem in that domain. We provide two sample
brainstorms below:

3.1 Brainstorming Example 0

Fixed-point arithmetic [1] is commonly used in high-performance digital signal
processing codes. Programmers using fixed-point arithmetic must painstakingly
track the range of possible values and precision of each variable. This is in

1



start contrast to the more-commonly used floating-point arithmetic, where the
number type itself automatically controls precision. A language for fixed-point
arithmetic could allow the compiler to perform this task automatically, alleviat-
ing programmer cognitive burden. Consider a simple 8-bit multiply-add:

uint8_t a, b, c;

? d = a * b + c;

What is the correct output type for this operation? a * b can overflow, so should
be widened to 16 bits, and adding c requires another bit of precision. Therefore,
d needs to be at least 17 bits. A correct program looks like:

uint8_t a, b, c;

uint32_t d = (uint16_t)a * (uint16_t)b + (uint32_t)c;

A DSL for fixed-point arithmetic would allow the user to write just the mathe-
matical expression, and the compiler would figure out types and when to insert
widening. Alternatively, a DSL might help the programmer reason about ap-
proximate fixed-point computations. For instance, by deducing or allowing the
programmer to specify operations which should intensionally lose some precision,
and then bound the impact of that precision loss.

3.2 Brainstorming Example 1

One common game for children (and adults) is assembling LEGOs. In this,
someone takes a set of small, simple pieces and follows either instructions or
inspiration in order to assemble them into a larger, complex structure. Can a
DSL be used to express LEGO assembly instructions? The DSL might be exe-
cuted to produce a virtual representation of the final assembly, or to produce a
rendering of visual instructions that a human could follow to build the assembly.

Consider the problem of describing this assembly. Perhaps it could be de-
scribed by a program that formalizes the following pseudo-code:

pin p1, p2;

long l1, l2;

short s1, s2;

flat f1, f2;

insert p1 into hole 2 of l1;

insert p2 into hole -2 of l1;

insert p1 into hold 2 of l2 and p2 into hold -2 of l2;

check that l1 and l2 are adjacent, with shape 15(?)x2x1;

call this group b;

// ..continue..

In the case that a program produces a virtual assembly, that assembly could be
(simplistically) rendered with pygame.

The basic nouns in this language appear to bricks (the things an assembled)
and locations (used to specify what connects to what). The basic verbs are to
connect bricks and to compute locations from bricks.

2

https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt0573c0b3c6f363b0/5f9aa07783a0a3620dd3b06c/SPM-BI-Wheelaxle.jpg?locale=en-us&auto=webp&format=jpeg&width=1800&quality=90&fit=bounds


4 Proposal

Your proposal will involve choosing one specific problem domain, and providing
a language sketch for your DSL. Your submission should be a 2-3 page report
providing a sketch of your language, and multiple examples of programs in
the language, highlighting more examples in the problem domain than in the
brainstorming submission.

5 Demo

You will demonstrate some working components of your language implementa-
tion to a small group of your peers and the teaching staff. This is a live (in-class)
presentation. Please prepare enough content (slides, live programming, etc) for
5 minutes, followed by 3 minutes of Q&A. This is a good opportunity to refine
the sketch from your proposal, discuss any possible issues you have encountered,
and get feedback on your design. You will be expected to pay attention to your
peers’ presentations, and provide feedback to them as well. The lecture fol-
lowing the Demos (May 29nd), we will break up into workshop groups to give
hands-on language feedback.

5.1 Feedback Groups

We will place students in groups of 4–5 in order to provide consistent peer
feedback. These feedback groups are responsible for providing useful feedback
on using your language after the Demo, during the studio time in the following
week of classes.

5.2 Writer’s Workshop

During the feedback session (May 29nd), your peers will take turns trying to use
your language. You will observe their attempts without speaking or providing
assistance, and should just take notes on the difficulties your peers face. This
format is designed to provide authentic feedback from real users. We expect
each group to spend approximately 10 minutes per DSL.

6 Presentation

Your final presentation will be performed during one of the last two class lec-
tures. This is expected to be a 5-10 minute presentation, followed by 3 minutes
of Q&A. This should be more refined than your demo, and you should discuss
what worked well and what didn’t. We expect you to provide verbal feedback to
at least one member of your feedback group during their Q&A.

7 Final Submission

Your final submission contains three parts:

1. Link to a repository containing your language implementation.

3



2. A language tutorial walking a user through writing programs in your lan-
guage, in Markdown (as is standard in many open-source project repos).

3. A report (4–8 pages) detailing your language and your implementation of
that language.

Your tutorial should not just involve writing the equivalent “Hello World”
program (though it should include this, if such an example exists), but should
also provide examples of each operator in your language, and a walkthrough of
a sufficiently complicated program.

Your report should provide a thorough high-level description of the language
and implementation, with figures detailing any necessary compiler details. You
should describe which problems in your chosen domain are expressible, and
which are not. Your report should clearly show how problems in your chosen
domain map to language constructs in your DSL. Additionally, you should in-
clude a short related works section (if applicable), and evaluation, whether that
is a user report, performance numbers, or otherwise.

References

[1] Wikipedia. Fixed-point arithmetic. https://en.wikipedia.org/wiki/

Fixed-point_arithmetic, 2024. [Online; accessed 11-February-2024].

4

https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic

	Deliverables and Due Dates
	Summary
	Brainstorming
	Brainstorming Example 0
	Brainstorming Example 1

	Proposal
	Demo
	Feedback Groups
	Writer's Workshop

	Presentation
	Final Submission

